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Abstract The thermoelastic bending analysis of func-
tionally graded ceramic—metal sandwich plates is studied.
The governing equations of equilibrium are solved for a
functionally graded sandwich plates under the effect of
thermal loads. The sandwich plate faces are assumed to
have isotropic, two-constituent material distribution
through the thickness, and the modulus of elasticity,
Poisson’s ratio of the faces, and thermal expansion coef-
ficients are assumed to vary according to a power law
distribution in terms of the volume fractions of the con-
stituents. The core layer is still homogeneous and made of
an isotropic ceramic material. Several kinds of sandwich
plates are used taking into account the symmetry of the
plate and the thickness of each layer. Field equations for
functionally graded sandwich plates whose deformations
are governed by either the shear deformation theories or the
classical theory are derived. Displacement functions that
identically satisfy boundary conditions are used to reduce
the governing equations to a set of coupled ordinary dif-
ferential equations with variable coefficients. The
influences played by the transverse normal strain, shear
deformation, thermal load, plate aspect ratio, side-
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to-thickness ratio, and volume fraction distribution are
studied. Numerical results for deflections and stresses of
functionally graded metal—ceramic plates are investigated.

Introduction

Sandwich construction has been developed and utilized for
almost 50 years because of its outstanding bending rigidity,
low specific weight, superior isolating qualities, excellent
vibration characteristics, and good fatigue properties. The
first two characteristics are the major reasons that it is used
more often in aerospace vehicles, which need high strength-
to-weight ratio. Recently, sandwich construction became
even more attractive due to the introduction of advanced
composite materials for the faces. In the design of sandwich
skins for aircraft wings, one of the important issues is the
bending of the plates. High-speed aircraft structural plates
are subjected not only to aerodynamic loading, but also to
aerodynamic heating. The temperature rise may bend the
plate and exhaust the load carrying capacity. The current
trend in the design and development of highly heated
sandwich plates in the aerospace and automobile industries
is to use advanced sandwich, such as Titanium—Zirconia
sandwich plates. These materials provide excellent thermo
mechanical properties at elevated temperatures. In view of
the fact that the demand for these materials is growing, there
is a necessity to understand the thermo-structural behavior
of structural elements made out of these materials, and to
evolve appropriate design and analysis methodologies.
Thermal stress analysis of isotropic structures fascinated
several post-war researchers. Significant contributions were
made by Timoshenko and Woinowsky-Krieger [1],
Nowacki [2], and Boley and Weiner [3]. Most of the
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previous research in the field of composite structures has
been concerned with isothermal problem. However, serious
efforts in the thermal stress analysis of composites were
made only in the eighties. An analytical method was sug-
gested by Wu and Tauchert [4, 5] and Tauchert [6] to
investigate thermal deformations in both symmetric and
anti-symmetric laminates.

A simply supported rectangular homogeneous isotropic
plate subjected to tent-like temperature distribution was
analyzed using the Rayleigh—Ritz procedure. The critical
temperatures for different types of composite have been
compared with that of aluminum plate using energy for-
mulation. Static problems associated with the linear
thermo-elastic analysis of laminated plates have been
studied extensively [4, 5, 7, 8]. Pell [7], who derived the
equations governing the transverse deflection of a thin
plate, first studied the problem of thermal bending of
anisotropic plates. Generalization of this work to hetero-
geneous plates subjected to arbitrary three-dimensional
temperature distribution is due to Stavsky [8].

Recent studies in the thermoelastic analysis of plates that
are laminates of fiber-reinforced materials indicate that the
shear deformation effect on the behavior of the plate is more
pronounced than in isotropic plates (see, for example, Wu
and Tauchert [4, 5]). Various first- and higher-order theories,
originally developed for the analysis of isothermal problems
of laminated plates, have been extended to include thermo-
elastic effects [9-17]. In fact, a shear correction factor is
introduced in all of the previous first-order theories.

In this article, a unified shear deformable plate theory is
developed for thermoelastic bending of FGM sandwich
plates (see Zenkour [18]). This theory is simplified by
enforcing traction-free boundary conditions at the plate
faces. The effects of shear and normal deformations are
both included. Exact solutions for homogeneous and FGM
sandwich plates are presented. The effects of temperature
field on the dimensionless axial and transverse shear
stresses of the FGM sandwich plate are studied. Numerical
results for deflection and stresses are investigated.

Problem formulation

Let us consider the case of a flat sandwich plate composed
of three microscopically heterogeneous layers as shown in
Fig. 1. Several assumptions to simplify the complexity of
the problem are introduced. These are:

(1) The face layers of the sandwich plate are made of a
functionally graded material with material properties
varying smoothly in the z (thickness) direction only.

(2) The core layer is made of an isotropic homogeneous
material.

ceramic

Z
metal

Fig. 1 Geometry of the FGM sandwich rectangular plate

(3) The sandwich plate is symmetrical with respect to the
mid plane z = 0.

(4) The bottom layer of the plate is made of mixed
metal—-ceramic material, which is started with metal
and graded to ceramic.

(5) The core layer is a fully ceramic layer.

(6) The top layer of the plate is made of mixed ceramic—
metal material, which is started with ceramic and
graded to metal.

(7) The effective material properties for faces layers, like
Young’s modulus, Poisson’s ratio, and thermal
expansion coefficients, can be expressed as

P(Z):Pm+(Pc_P171)V<n)a (1)

where P,, and P. denote the property of the bottom
and top faces of layer 1, respectively, and vice versa
for layer 3 depending on the volume fraction
V(”)(n =1, 2, 3). Note that P, and P, are, respec-
tively, the corresponding properties of the metal and
ceramic of the FGM sandwich plate.

Rectangular Cartesian coordinates (x, y, z) are used to
describe infinitesimal deformations of a three-layer sand-
wich elastic plate occupying the region [0, a] x [0, b]x
[~h/2, +h/2] in the unstressed reference configuration.
The mid-plane of the composite sandwich plate is defined
by z = 0 and its external bounding planes being defined by
z = %h/2. The vertical positions of the bottom surface, the
two interfaces between the core and faces layers, and the
top surface are denoted, respectively, by hg = —h/2, hy,
hy, hs = hi2.

The volume fraction V' through the thickness of the
sandwich plate faces follows a simple power-law while it
equals unity in the core layer. It reads

— ko \ ¥
vy — (220 ho, h 2
(hl — h() ) z € [ 0, 1]7 ( a)
V@ =1, ze [h,h), (2b)
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— i \ X
Ve — (hzz _;3) .,z € [h, h3), (2¢)

where k is a parameter that dictates the material variation
profile through the faces thickness (the volume fraction
exponent), which takes values greater than or equal to zero.
The core layer is independent of the value of k£ which is a
fully ceramic layer. However, the value of k equal to zero
represents a fully ceramic plate. The above power-law
assumption given in Egs. 2a and 2c reflects a simple rule of
mixtures used to obtain the effective properties of the
ceramic—metal plate faces (see Fig. 1). Note that the vol-
ume fraction of the metal is high near the bottom and top
surfaces of the plate, and that of ceramic is high near the
interfaces. In addition, Eq. 2 indicates that the top (z = h3)
and bottom (z = hg) surfaces of the plate are purely metal
whereas the bottom (z = k) and top (z = h,) surfaces of
the core are purely ceramic.

The displacements of a material point located at (x, y, z)
in the plate may be written as (Zenkour [18])

0
ux(x,y,2) = u — Z% + ¥(2) oy,
ow
"‘y(xa)UZ) :V_Za‘f'\}I(Z)(Py, (3)

MZ(x7y7 Z) =w + lPI(Z)(/)U

where u, v, w, ¢, ¢,, and ¢, are independent of z and
denote the displacements and rotations of the yz, xz, and xy
planes due to bending, respectively.

The displacement field of the classical thin plate theory
(CLPT) is obtained easily by setting ¥(z) = 0 and ¢, = 0.
The displacement field of the first-order shear deformation
plate theory (FSDPT) is obtained by setting ¥(z) = z and
@, = 0. Also, the displacement field of the third-order
shear deformation plate theory (TSDPT) of Reddy [19] is
obtained by setting

Y(z) = z[l — % (%)1 and ¢, =0. (4)

In addition, the displacement field of the simple sinusoidal
shear deformation plate theory of Zenkour [20-25] is
obtained by setting

Y(z) = ﬁsin (E) and ¢, =0. (5)

7 h z

The displacement field of the present refined sinusoidal
shear deformation plate theory (SSDPT) with ¢, # 0 is
simplified by enforcing traction-free boundary conditions
at the plate faces. It contains one dependent unknowns
more than that in the first- and third-order shear deforma-
tion theories, but accounts according to cosine-law
distribution of the transverse shear strains through the
thickness of the plate. No transverse shear correction
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factors are needed for both SSDPT and TSDPT because a
correct representation of the transverse shearing strain is
given. In addition, the effect of normal deformation is
included in the present theory.

The strain components are related to the displacements
given in Eq. 3 can be expressed as

&y &y Ky Ny
g p =2 & s +z8 K, o+ 0, o, (6a)
ny 'ng ny nx)’

& =¥ (2)e, (6b)

0

{ ))yz } T,(Z){ Vﬁz }7 (60)
)))CZ ’VXZ

where

0o, do,
Voo = ((py+ ;;‘)7 Voo = <¢x+ a(i‘),

0 _8v+6u o *w o *w 2 *w
T T oy oy’ a2’ Y 2 Y Toxdy’
a(/)x _ aqo,\’ _ aQD\ aq).l
nx - ax ) ny - ay ) nxy - ax ay . (7)

The stress—strain relationships accounting for transverse
shear deformation and thermal effects for the nth layer can
be expressed as

n E vE vE (n) n
Oy () 1—2 I,E\,Z I,Evz 0 Ex — aT ()
.
Tyy = 7 1 0 &y — ol ,
Oz -2 0 g —ol
Txy symm G Vay
(8a)

n) n
{ Tyz }( _ (n){ Vyz }< ) (Sb)
sz VXZ ’

in which E(”’(z) and v(”)(z) are Young’s modulus and
Poisson’s ratio characterizing elastic properties in the plane
of isotropy of the nth layer. The shear modulus G"(z)
characterizing the material response under a shear load
applied in the plane of isotropy takes the form

EM

G(n) - -
2(1 4 vm)

©)

The principle of virtual work in the present case yields

/2
/ / {ag)ésx + ag)ésy + ag’)ész + r)(c’;)éyxy
—n2 Jo

XZ

+1) oy, + T<”>5sz} dQdz =0, (10)

or
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N = {N,, Ny, No,}', M= {M,, M,, M,,}/

/ [N Se? + nyéygy + Nyég(y) + M, Sk, + M,y Sk = {Ny, Ny, Ny}, = {M,, My, M, }',
Q . S=1{8, Sy, Sy}, (15a)

+ My 0ky + Sx0n, + Syy0n,, + 8,01, + N 0¢; ) .

+ Q.07 + 0,:)0.] dQ = 0, (11) N'= {Nf, Ny, 0} ., M' = {MXT, Mm;, 0} ;

t

where T = {sj, s7, 0} , (15b)
Ny, Ny7 ny 3 hy ( 1 0o 0 01 ! ¢
My, My, My, o= Z / (Gexs Tyys Ty R dz, &= {8"’ &y VX.V} k= {rom g}, n={n, My, ”xy} J

— hy—
Se Sy, Sy g

(12a)
3 hy,
=3 [ (120
n=1 hn—1
ok ()
@AM=§}A(%w)W@&, (12¢)
n=1 n—1

where h,, and h,_, are the top and bottom z-coordinates of
the nth layer.

Governing equations

The governing equations of equilibrium can be derived from
Eq. 11 by integrating the displacement gradients by parts and
setting the coefficients du, v, dw, d¢,, d¢,, and d¢_ to zero
separately. Thus one can obtain the equilibrium equations
associated with the present unified shear deformation theory,

ON, ON,
a + ayy = 07 (133)
ON,, ON,

axy 8—; =0, (13b)
M, M, M,

Ox? + oxdy  0y* % (13¢c)
oS,  0S,

&% 6yy — 0y =0, (13d)
oSy, 0Sy
@—xy a — 0y =0, (13e)

sz.,x + Qyz.,y — N, = 0.

Using Eq. 8 in Eq. 12, the stress resultants of a sandwich plate
made up of three layers can be related to the total strains by

(13f)

N A B B (¢ L NT
M 3=|B DD"|{ K p+dy|L|2—{ MT 3, 0=A",
s B*DF| |y R ST
NZZZRG(PZ+L(82+S?,)—i-La(KX-I—Ky)-i-R(r]x—H’]y)—NZTZ,

(14)

where 0,, is the Kronecker’s delta, and

(15¢)
A11 A12 0 Bll BIZ 0
A=|Ap An O |, B=|B; Bn 0 |,
0 0 A66 0 0 866
Dy D 0]
D= |Din Dn 0 |, (15d)
0 0 Degs |
[Bf, Bf, 0] Dy, Df, O
B'=|Bj, By 0|, D'=|Dj, D5 0 |,
| 0 0 BY] 0 0 Dg
(FYy Fly 0]
Fi=1F, F 0], (15e)
L0 0 Fg ]
t a A4 0
0= {me Qyz}ta Y= {ngv "/;)Z} , AY= |: 84 A4 :|7
55
(15f)

where N and M are the basic components of stress resultants
and stress couples, S are additional stress couples associated
with the transverse shear effects, Q and N, are transverse
and normal shear stress resultants. Note that the superscript
t denotes the transpose of the given vector. The stiffness
coefficients A;; and By;,... etc., are defined as

' ( a
Ay, Bu, Du, By, DY, F{

A, B, D2, BY,, DY,, FY,
Ags, By D6, Begs Digr Fag

1
3 E®
=3 (122 (), 29, W) { v e,
n=1"""1—yn 1
2
(16a)
and

(A2, By, D, BS,, D5, F5,)

= (An, Bu, Dun, By, Diy, FiY), (16)
L )
a 3 y () .
L E vz "
B — N2 16
R nz:; /hnl 1 — ym? ) v 2 (16¢)
Ru \Pl/
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Ay = / lP’(z)]2 dz = A%, (16d)
n=1 7 -1
The stress and moment resultants, N/ = =N/ I M=
M, ST =S and N due to thermal loadlng are deﬁned by
NT
MXT 3 /h,, E(n) ( z
-\ 1 +2v<">>oc<”>T dz.
Sy ; oy 1=y W(2)
sz ¥ (Z)
(17)

The temperature field variation through the thickness is
assumed to be
¥(2)

Z
- Tl(X,Y) +ET2(x7y) +TT3(x7y)a

where T, T, and T5 are thermal loads.
Substituting from Eq. 14 into Eq. 13, we obtain the
following equation,

T(x,y,z) (18)

Andiu+ Assdnu + (Aiz + Ass)di2v — Biidinw
— (B2 + 2Bes)dimaw
+ (Bgs + Bl,)di2¢p, + Bggdn g,

+ B diio, + Ldio, = fi, (19a)
Anpdyv + Asedi1v + (A1 + Ass)diou — Bodapow

— (B2 + 2Bes)d11aw

+ (B + Biy)di2o, + Bigd1 ¢ + B3ydn o,

+ Ld2¢z :f27 (19b)

— Biidiniu — (Biz + 2Bgs)dinau — (Bi2 + 2Bes)di12V
— Bydyov + Diidiinw + 2(Dia + 2Des )di122w
+ Dydomw — D di1 ¢, — (DY, + 2D% ) din

— (DY, + 2D%)di12¢py — D3ydana

= L(dno, +dne,) = fi, (19¢)
B{\dy1u + Bigdnu + (B, + Bl )diov — DS dyjy w

— (D, + 2D% ) diow + F{ dv1 ¢, + Fiedn o,

+ (Fiy + Fi)dingy — Ay, + dip,) + Rdyp,

:f47 (lgd)

(372 —+ Bgé)d]zu —+ Bgzdzzv —+ Bgﬁdl 1V — (DLII2 —+ ZDgé)dl 2w
— Dgzdzzzw + (Filz + Fg6)d12(px + Fgﬁdl 190y + ngdzz([)y

—A%(p, +dog.) + Rdrop, = f, (19)
L(dlu +d2V) —La(d1 1 W—|—d22W) + (R —Ags)
(dl(px+d2(py)+Ra(pz_AgS(dll(pz +d22(pz) :f67 (l9f)

where {f}*{fl,fz,fg,ﬁ;,fs,fG}' is a generalized force
vector, dj, dy; and djj,, are the following differential

operators:

@ Springer

0? o} ot
dij=—%—, dj=s—%—%—, dijim=5—F5F5=:
T Ox; Ox; 0x;0x;0x; ' 0x;0x;0x;0X,
(i7j7 l7m: 172) (20)

The components of the generalized force vector {f} are
given by

P ONT e oN; e *MI oM
1= ox ) 2 = ay ’ 3= axz ayz 3
as” as
f4 ox 3 fSZa—};7 fﬁZNZTZ (2’1)

For further computational reasons the converted expressions
of the stress components are also recorded. They read

J<n>_L"> w . wd (Tw )T
W ym? | ox Oy a2 92

+ @) (rr + vy ) VP (2) 0.

—(1+ 2v(”))oc<”)T}, (22a)
o B [ v (T T
w T m? ox | dy < a2 o2
+¥(2) (@, + 7" 0)
YW (). — (1 + 2v<">)a<">T}, (22b)

w_ E® Qu v\ oy (Ow Tw
== 12 \aay) ¢ a2 T

+\P(Z)V(n) (%m + qoy,y) + TH(Z)(PZ —(1 +2V(n))(x(n)T}’

(22¢)
ri?—z(li('i){g;‘ Sv Zaangr‘P(Z)(qox,erco)x)},

(22d)
= 2(1E+(ni< FYE (wy + aai;) (22¢)
w = 2(1linl<n>) @ ("’X * %) (226)

Exact solution for a simply-supported FGM sandwich
plate

Rectangular plates are generally classified in accordance
with the type of support used. We are here concerned
with the exact solution of Egs. (19a-f) for a simply
supported FGM plate. The following boundary conditions
are imposed at the side edges for SSDPT:
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v=w=¢,=¢,=Ne=M,=8,=0 atx=0,a Cos = —(Bge” + B5y1?),
u:w:@xz(pZ:N :M}.:Sy:O aty:O,b Cos = pL,

(23a)  Cy3 = —[Dud* +2(D12 + 2Dg6) > 1* + Doy,
For TSDPT and FSDPT, the boundary conditions are Cyy = A[D{fﬂz + (DY, + 2Dg ),“2]

Css = u[(DY, +2D) 7> + D

v=w=0, =N =M, = =0 atx=0,a 3 y[( ]22 2 22#]

(23b)  C3g = —L'(X* + 1),
u=w=¢,=Ny=M,=8§,=0 aty=0,b R R
For CLPT. the bound diti Cay = — [F}\ 17 + Fge® + AQ, ]
or , the boundary conditions are ] .

Y Cas = —2n(Fiy + Fgg),
v=w=N,=M,=0 atx=0,a (230) Css = A(R—AY,),
c

u=w=N,=My;=0 aty=0,b Css = — [Féi* + Fou* + A%),
To solve this problem, Navier presented the transverse Cs6 = '“(R - Ags)7
temperature loads T, T», and T3 in the form of a double  Cgs = iZAfM + ,LLZA[;S + R“. (27)

trigonometric series as

T T
T, p =< T, p sin(ix)sin(uy), (24)
Ts T;

where . = n/a, u=mn/b, T, T>, and T; are constants.
Following the Navier solution procedure, we assume the
following solution form for u, v, w, ¢, ¢, and ¢ that
satisfies the boundary conditions,

u U cos(/x) sin(uy)
v Vsin(( ) e S((,uy))
_ W sin(Ax) sin uwy
o, [ XCOS()JC) sin(uy) [’ (25)
Py Y sin(Ax) cos(uy)
Pz Z sin(Ax) sin(uy)

where U, V, W, X, Y, and Z are arbitrary parameters to
be determined subjected to the condition that the solution
in Eq. 25 satisfies governing equations (19). One obtains
the following operator equation,

[C{A} = {F}, (26)
where {A}={U,V,W, X, Y,Z), and [C] is the
symmetric matrix given by

Cii = —(AnA* + Agst?),

Cia = —Au(Ar2 + Ass),

Ci3 = A[B11 /> + (Bi2 + 2Bes ) 1],

Cis = — (B}, 2 + Begi®),

Cis = —(Bi, + Bgg) A,
C|6 = ;uL,
Cx = —(AgsA” + Anpt?),

Cy = #[(Blz + 2B66)/12 + 322H2]7
Coy = Cis,

in which 7 =%,

The components of the generalized force vector {F} =
{F\, Fa, F3, F4, Fs, Fs}' are given by

Fy = /(A"T) + B"T, +“B"T3),

F, = p(A"Ty + B'T, + “B"T3),

F3 = —h(2* +u?)[B"T) + DT, +“D"Ts],
Fy = h(*B"T\ + D" T, + “F'T;),

Fs = ph(“B"Ty +“D'T> + “F'T3),

F6 = /’Z(LTTl + aLTTZ + RTT_3)7 (28)
where
W =3 [ s
{1, z, 7} dg, (29a)
{aBT’ (IDT, aFT} _ Z/ n
(1+ 20 ( ){1 z, ¥(2)} dz,
(29b)

{LT aLT RT} Z/ [

(14 2v")al lP(){l 7, P(2)} dz,

(29¢)
P(z) = ¥ and ¥'(7) = LQ.
Also, the stress components are recorded. They read
E™

2
m { — (}uU + V("),MV) -+ Z()VZ + V(H)HZ)W

o) —

—W(2)(AX + v uy) + v (2)Z —
(T) +zT> + WT3)} sin(Ax) sin(uy),

(1 4 2v(M)e ™)
(30a)
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w_ _E” ) W22
ay) = m{—(\i AU+ pV) 4+ z(0WW A+ )W
—W(2)(VIX 4 u¥) + v (2)Z — (1 + 20
(Ty + zT> + WT3)} sin(Ax) sin(py),
(30D)
o = 1 E(:zmz {—v<">(w +uV) + 20" (2 4 1H)W
V() (OX + uY) + P (2)Z — (1 +2v™)
o (Ty + ZT, + PT3)} sin(Jx) sin(uy),
(30c)
) = i {uU + 2V = 22uW
V21 4 v)
+ W(z)(uX + AY)} cos(Ax) cos(wy), (30d)
T = A‘P/(z) (Y + uZ) sin(Jx) cos(uy),  (30e)
21+ vm) ’
EM
W = _— = W(z) (X + JZ) cos(x)sin(uy).  (30f)

= T (1 )

Several kinds of sandwich plates

Figure 2 shows the through-the-thickness variation of the
volume fraction function of the ceramic for
k=0.01, 0.1, 0.5, 1.5, and 5. Note that the core of the
plate is fully ceramic while the bottom and top surfaces of
the plate are metal-rich.

The (1-0-1) FGM sandwich plate
As shown in Fig. 2a, the plate is symmetric and made of

only two equal-thickness FGM layers, i.e. there is no core
layer. Thus,

hy =hy=0. (31)
The (1-1-1) FGM sandwich plate

Here the plate is symmetric and made of three equal-
thickness layers (see Fig. 2b). In this case, we have

hy = —h/6, hy="h/6. (32)
The (1-2-1) FGM sandwich plate
As shown in Fig. 2c, the plate is symmetric, in which the

core thickness equals the sum of faces thickness. So, one
obtain

@ Springer

hy = —h/4, hy=h/4. (33)

The (2-1-2) FGM sandwich plate

Here the plate is also symmetric and the thickness of the
core is half the face thickness. Figure 2d shows that

hy = —h/10, hy = h/10. (34)

The (2-2-1) FGM sandwich plate

In this case the plate is not symmetric and the core thick-
ness is the same as one face while it is twice the other (see
Fig. 2e). Thus

hy = —h/10, hy = 3h/10. (35)

Numerical results

The static analysis is conducted for combinations of metal
and ceramic. The set of materials chosen is Titanium and
Zirconia. For simplicity, Poisson’s ratio of the two mate-
rials is assigned the same value. So, Young’s modulus and
thermal expansion coefficient are written as the following:

Metal: Ti-6A1-4V Ceramic: ZrO,

E, = 66.2 GPa
v=1/3
%, = 10.3 x (107%K)

E.=117.0 GPa
v=1/3
a, = 7.11 x (107%K)

To illustrate the preceding thermal-structural analysis, a
variety of sample problems is considered. For the sake of
brevity, only linearly varying (across the thickness) tem-
perature distribution T = zT5, non-linearly varying (across
the thickness) temperature distribution T = ‘T—’(z)T3, and a
combination of both T =Z7T, —i—‘I’(z)Tg are considered.
Note that, in most of the literature, the thermal stress
problems are treated under a steady state temperature dis-
tribution that is linear with respect to the thickness
direction.

Different dimensionless quantities are used for pure
temperature loading as:

h a b
OC()Tzazw 272 ’
h? ab
()TQE()(,I2 Tox 2 2

h

2
_ 10A b
shear stress 7,, = Tyz =
) TZ Eya < 2

center deflection w =

axial stress G, =
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Fig. 2 Variation of volume fraction function through plate thickness
for various values of the power-law index k and different types
of sandwich plates: (a) The (1-0-1) FGM sandwich plate, (b) the

where the reference values are taken as E, = 1 GPa and
oo = 107%K. Numerical results are tabulated in Tables 1—4
using different plate theories. Additional results are plotted
in Figs. 3-8 using the present sinusoidal shear deformation
plate theory (SSDPT) with ¢, # 0. The effect of trans-
verse normal and shear deformations are both included. It
is assumed, unless otherwise stated, that a/h = 10,
alb =1, Ty =0 and T, = 100. The shear correction factor
of FSDPT is fixed to be K = 5/6.

Table 1 contains the dimensionless center deflection w
for an FGM sandwich plate subjected to thermal field
varying linearly through the thickness (73 =0). The

(1-1-1)

(b)os
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(1-1-1) FGM sandwich plate, (c¢) the (1-2-1) FGM sandwich plate,
(d) the (2-1-2) FGM sandwich plate, and (e) the (2-2-1) FGM
sandwich plate

deflections are considered for k =0, 1, 2, 3, 4, and 5 and
different types of sandwich plates. Table 1 shows that the
effect of both shear and normal deformations is to decrease
the deflections. However, the difference between shear
deformation theories is less significant when ¢, =0
especially for fully ceramic plates (k = 0).

Table 2 compares the deflections of different types of
the FGM rectangular sandwich plates with k = 3. The
deflections decrease as the aspect ratio a/b increases and
this irrespective of the type of the sandwich plate. The
inclusion of the normal deformation will decrease the
deflections.
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Table 1 Dimensionless center deflections w of the different sandwich square plates (75 = 0)

k Theory® W
1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
0 SSDPT 0.461634 (0.480262) 0.461634 (0.480262) 0.461634 (0.480262) 0.461634 (0.480262) 0.461634 (0.480262)
TSDPT 0.480262 0.480262 0.480262 0.480262 0.480262
FSDPT 0.480262 0.480262 0.480262 0.480262 0.480262
1 SSDPT 0.614565 (0.636916) 0.586124 (0.606292) 0.563416 (0.582343) 0.599933 (0.621098) 0.573327 (0.592604)
TSDPT 0.636891 0.606256 0.582302 0.621067 0.592568
FSDPT 0.636667 0.605936 0.581932 0.620792 0.592239
2 SSDPT 0.647135 (0.671503) 0.618046 (0.639361) 0.590491 (0.609875) 0.633340 (0.656142) 0.601843 (0.621581)
TSDPT 0.671486 0.639325 0.609829 0.656115 0.621544
FSDPT 0.671339 0.639028 0.609438 0.655893 0.621215
3 SSDPT 0.658153 (0.683572) 0.631600 (0.653671) 0.602744 (0.622467) 0.646475 (0.670275) 0.614121 (0.634175)
TSDPT 0.683560 0.653638 0.622420 0.670253 0.634139
FSDPT 0.683467 0.653374 0.622035 0.670077 0.633826
4 SSDPT 0.662811 (0.688803) 0.638705 (0.661291) 0.609560 (0.629533) 0.652890 (0.677321) 0.620663 (0.640940)
TSDPT 0.688795 0.661260 0.629487 0.677303 0.640905
FSDPT 0.688734 0.661022 0.629112 0.677160 0.640607
5 SSDPT 0.665096 (0.691420) 0.642948 (0.665898) 0.613842 (0.634003) 0.656490 (0.681343) 0.624629 (0.645070)
TSDPT 0.691415 0.665869 0.633958 0.681327 0.645036
FSDPT 0.691373 0.665649 0.633591 0.681207 0.644749
? Number in parenthesis based on the present theory without normal deformation
Table 2 Effect of aspect ratio a/b on the dimensionless deflection of the FGM sandwich plates (k = 3,75 = 0)
Scheme  Theory® w
alb =1 alb =2 alb =3 alb =4 alb =5
1-0-1 SSDPT  0.658153 (0.683572)  0.270902 (0.273492)  0.141810 (0.136798)  0.088642 (0.080512)  0.062334 (0.052678)
TSDPT  0.683560 0.273480 0.136786 0.080501 0.052667
FSDPT  0.683467 0.273387 0.136693 0.080408 0.052574
1-1-1 SSDPT  0.631600 (0.653671)  0.259980 (0.261647)  0.136105 (0.130971)  0.085094 (0.077163)  0.059862 (0.050554)
TSDPT  0.653638 0.261614 0.130939 0.077131 0.050522
FSDPT  0.653374 0.261350 0.130675 0.076868 0.050260
1-2-1 SSDPT  0.602744 (0.622467)  0.248135 (0.249245)  0.129933 (0.124837)  0.081262 (0.073610)  0.057192 (0.048277)
TSDPT  0.622420 0.249199 0.124791 0.073564 0.048231
FSDPT  0.622035 0.248814 0.124407 0.073181 0.047849
2-1-2 SSDPT  0.646475 (0.670275)  0.266094 (0.268228)  0.139295 (0.134212)  0.087077 (0.079029)  0.061244 (0.051740)
TSDPT  0.670253 0.268206 0.134190 0.079007 0.051718
FSDPT  0.670077 0.268031 0.134015 0.078833 0.051544
2-2-1 SSDPT  0.614121 (0.634175)  0.252758 (0.253878)  0.132303 (0.127113)  0.082701 (0.074914)  0.058168 (0.049101)
TSDPT  0.634139 0.253843 0.127077 0.074879 0.049066
FSDPT  0.633826 0.253531 0.126765 0.074568 0.048756

? Number in parenthesis based on the present theory without normal deformation

Table 3 lists values of axial stress g, for k=0, 1, 2, 3,
4, and 5 and different types of sandwich plates. Once
again, the plate is subjected to a thermal field varying
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linearly through its thickness. All theories (FSDPT,
TSDPT, and SSDPT with ¢, = 0) give the same axial
stress G, for a fully ceramic plate (k = 0). Once again,
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Table 3 Dimensionless axial stresses a,, of the FGM sandwich square plates (753 = 0)

k Theory® Gy,

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
0 SSDPT —2.286893 (—2.079675) —2.286893 (—2.079675) —2.286893 (—2.079675) —2.286893 (—2.079675) —2.286893 (—2.079675)
TSDPT —2.079675 —2.079675 —2.079675 —2.079675 —2.079675
FSDPT —2.079675 —2.079675 —2.079675 —2.079675 —2.079675
1 SSDPT —2.277311 (—1.993885) —2.482321 (—2.144369) —2.639491 (—2.261939) —2.383671 (—2.071622) —2.653105 (—2.276155)
TSDPT —1.993921 —2.144422 —2.262000 —2.071668 —2.276209
FSDPT —1.994116 —2.144707 —2.262332 —2.071911 —2.276503
2 SSDPT —2.047272 (—1.824065) —2.268798 (—1.982233) —2.465763 (—2.127124) —2.154066 (—1.899672) —2.492766 (—2.152815)
TSDPT —1.824089 —1.982285 —2.127193 —1.899711 —2.152872
FSDPT —1.824214 —1.982549 —2.127548 —1.899905 —2.153170
3 SSDPT —1.963621 (—1.764689) —2.173723 (—1.911970) —2.384720 (—2.065398) —2.058212 (—1.830216) —2.421808 (—2.099241)
TSDPT —1.764705 —1.912017 —2.065467 —1.830246 —2.099296
FSDPT —1.764783 —1.912249 —2.065816 —1.830397 —2.099579
4 SSDPT —1.926265 (—1.738915) —2.122027 (—1.874521) —2.338550 (—2.030732) —2.009198 (—1.795543) —2.383070 (—2.070371)
TSDPT —1.738925 —1.874564 —2.030800 —1.795568 —2.070424
FSDPT —1.738976 —1.874773 —2.031140 —1.795690 —2.070694
5 SSDPT —1.907167 (—1.726003) —2.090296 (—1.851867) —2.309021 (—2.008794) —1.980712 (—1.775738) —2.359110 (-2.052671)
TSDPT —1.726010 —1.851906 —2.008861 —1.775759 —2.052722
FSDPT —1.726045 —1.852097 —2.009191 —1.775861 —2.052982
? Number in parenthesis based on the present theory without normal deformation
Table 4 Dimensionless transverse shear stresses T, of the FGM sandwich square plates (T35 = —100)
k Theory® Tyy
1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
0 SSDPT 0.762438 (0.574063) 0.762438 (0.574063) 0.762438 (0.574063) 0.762438 (0.574063) 0.762438 (0.574063)
TSDPT 0.466349 0.466349 0.466349 0.466349 0.466349
1 SSDPT 0.916983 (0.696774) 0.911165 (0.694817) 0.922812 (0.705270) 0.905127 (0.689077) 0.914313 (0.697901)
TSDPT 0.564059 0.559957 0.566925 0.556662 0.562231
2 SSDPT 0.919218 (0.696044) 0.905787 (0.689620) 0.930546 (0.711266) 0.894489 (0.679194) 0.916889 (0.699571)
TSDPT 0.565881 0.556769 0.571546 0.550567 0.564062
3 SSDPT 0.923419 (0.697635) 0.896673 (0.681516) 0.930393 (0.710627) 0.883314 (0.669256) 0.914156 (0.696850)
TSDPT 0.568711 0.551237 0.571319 0.544027 0.562514
4 SSDPT 0.931204 (0.702617) 0.888770 (0.674664) 0.928612 (0.708782) 0.875373 (0.662291) 0.911369 (0.694226)
TSDPT 0.573624 0.546464 0.570117 0.539446 0.560893
5 SSDPT 0.940770 (0.709315) 0.882525 (0.669326) 0.926543 (0.706815) 0.870190 (0.657748) 0.909225 (0.692229)
TSDPT 0.579531 0.542724 0.568771 0.536526 0.559642

# Number in parenthesis based on the present theory without normal deformation

the inclusion of the normal deformation gives axial
stresses less than those obtained from other shear defor-
mation theories. In general, the axial stress increases as k
increases.

Table 4 shows similar results of transverse shear stress
7., for FGM sandwich plate subjected to a combination of

linearly and non-linearly thermal field (75 = —100). The
relative difference between SSDPT (with and without nor-
mal deformation) and TSDPT may be stable for different
values of k and this irrespective of the type of the FGM
sandwich plate. The transverse shear stress decreases for
k > 2 except in the case of the (1-0-1) FGM sandwich plate.
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Fig. 3 Dimensionless center deflection w as a function of side-to-

thickness ratio a/h for different types of sandwich plates: (a) The
(1-0-1) FGM sandwich plate, (b) the (1-1-1) FGM sandwich plate,

It is to be noted that the CLPT yields identical center
deflections and axial stresses with the FSDPT and so
Tables 1-3 lack the results of CLPT. In addition, the
transverse shear stresses as per the FSDPT are indistin-
guishable and so Table 4 lacks the results of FSDPT. In
general, the fully ceramic plates give the smallest deflec-
tions, transverse shear stresses. As the volume fraction
exponent increases for FG plates, the deflection and axial
stress will increase. In fact the non-symmetric (2-2-1) FGM
plate yields the smallest axial stresses. But the symmetric
(2-1-2) FGM plate yields the smallest transverse shear
stresses.
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(c¢) the (1-2-1) FGM sandwich plate, (d) the (2-1-2) FGM sandwich
plate, and (e) the (2-2-1) FGM sandwich plate

Figure 3 shows the variation of the center deflection w
with side-to-thickness ratio a/h for different types of
sandwich plates. The deflection of the metallic plate is
found to be the largest magnitude and that of the ceramic
plate of the smallest magnitude. The deflections of the
FGM sandwich plates decreases as a/h increases and may
be unchanged for a/h > 5. It is to be noted that the FGM
sandwich plates with intermediate properties undergo cor-
responding intermediate values of center deflection. This is
expected because the metallic plate is the one with the
lowest stiffness and the ceramic plate is the one with the
highest stiffiness.
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Fig. 4 Variation of axial stress 7,, through the plate thickness for
different types of sandwich plates: (a) The (1-0-1) FGM sandwich
plate, (b) the (1-1-1) FGM sandwich plate, (c¢) the (1-2-1) FGM

Figure 4 contains the plots of the axial stress &y,
through-the-thickness of the ceramic, FGM (k = 1.5), and
metal plates. The stresses are tensile below the mid-plane
and compressive above the mid-plane except for the non-
symmetric (2-2-1) FGM plate. The axial stress is con-
tinuous through the plate thickness. Figure 4c shows that
the (1-2-1) FGM plate yields the maximum tensile
{minimum compressive} stress at the bottom {top} sur-
face of the plate. These surfaces are metal-rich for the
FGM plate. However, the (2-2-1) FGM plate yields the
minimum compressive stress at the top surface of the
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sandwich plate, (d) the (2-1-2) FGM sandwich plate, and (e) the
(2-2-1) FGM sandwich plate

plate (see Fig. 4e). In addition, all types of FGM plate
yield the maximum compressive {minimum tensile} stress
at the top {bottom} surface of the core layer. These are
the ceramic-rich surfaces in which the ceramic plate
experiences the minimum compressive or maximum ten-
sile stresses.

In Fig. 5 we have plotted the through-the-thickness
distributions of the transverse shear stress 7,,. The maxi-
mum value occurs at a point on the mid-plane of the plate
and its magnitude for FGM plate is larger than that for
homogeneous plates.
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Fig. 5 Variation of transverse shear stress 7,, through the plate
thickness for different types of FGM sandwich plates: (a) The (1-0-1)
FGM sandwich plate, (b) the (1-1-1) FGM sandwich plate, (c) the

Figure 6 shows the effects of the aspect ratio a/b on
the dimensionless deflection w. The deflection decreases
as a/b increases. The deflection of the metallic plate is
found to be the largest magnitude and that of the cera-
mic plate, of the smallest magnitude. It is to be noted
that the FGM sandwich plate with intermediate proper-
ties undergo corresponding intermediate values of center
deflection.
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Now, we will turn our attention to the effect of thermal
load T3 on the deflection and stresses. Figure 7 shows the
effects of the side-to-thickness ratio a/h and the aspect ratio
a/b on the dimensionless center deflection w for FGM
plates (k = 0.5) subjected to nonlinearly distributed tem-
perature field. It is found that the side-to-thickness ratio
effect and the aspect ratio effect are more pronounced on
the thermal bending deflection w of a plate under uniform
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Fig. 6 Effect of the aspect ratio a/b on the dimensionless center
deflection w of different types of FGM sandwich plates: (a) The
(1-0-1) FGM sandwich plate, (b) the (1-1-1) FGM sandwich plate,

temperature distribution 73 = 100, and it is less pro-
nounced on the non-uniform thermal plate 75 = —100. But
when T3 =0, the center deflection takes intermediate
values between non-uniform and uniform thermal plate.

In Fig. 8 we have plotted the through-the-thickness
distributions of the dimensionless axial stress &, and
the transverse shear stress T,, through-the-thickness of the
(1-1-1) FGM plate (k = 1.5). Figure 8 reveals that the
variation of stresses is very sensitive to the variation of the
thermal load T value.

——- metal
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(c) the (1-2-1) FGM sandwich plate, (d) the (2-1-2) FGM sandwich
plate, and (e) the (2-2-1) FGM sandwich plate

Conclusion

The purpose of this article is to develop the bending
behavior of the three layer sandwich plates, which are
constructed in such a manner that those assumptions stated
previously are satisfied, due to a general type of externally
applied thermal load. The shear theories of sandwich plates
are used to investigate the bending response under a
sinusoidal distribution of temperature field. The effect of
transverse normal strain as well as the effect of shear
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Fig. 7 Effect on thermal load 75 on the dimensionless center
deflection w of the (1-1-1) FGM sandwich plate (k = 0.5): (a) versus
alh, (b) versus a/b

deformation is included in the present theory. The gov-
erning equations are converted into a set of coupled
ordinary differential equations with variable coefficients.
Analytical solutions for FGM sandwich plates are devel-
oped using the Navier procedure. The results of the shear
deformation theories are compared together. The present
SSDPT (with and without the effect of transverse normal
strain) offers accurate and reliable solutions for the analysis
of homogeneous and FGM sandwich plates comparing with
other shear deformation theories. It is seen that the
deflection of the plates that correspond to properties
intermediate to that of the metal and ceramic necessarily lie
in between that of ceramic and metal. The axial stress is
found to take the maximum compressive {minimum ten-
sile} at the top {bottom} surface of the core layer.
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Fig. 8 Effect of the thermal load T3 on (a) axial stress &, and (b)
transverse shear stress 7,, of the (1-1-1) FGM sandwich plate
(k= 1.5)

However, the transverse shear stress is found to take the
maximum value at a point on the mid-plane of the FGM
plate. Finally, the inclusion of the transverse normal strain
will increase the shear stress and will decrease both of
deflection and axial stress.
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